Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Geophys Res Atmos ; 127(8): e2021JD036251, 2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1852390

ABSTRACT

With the continuation of the Coronavirus Disease 2019 (Covid-19) pandemic, the impacts of this catastrophe on anthropogenic emissions are no longer limited to its early stage. This study quantitatively estimates effective radiative forcings (ERFs) due to anthropogenic well-mixed greenhouse gases (WMGHGs) and aerosols for the period 2020-2050 under the three latest Covid-19 economic-recovery scenarios using an aerosol-climate model. The results indicate that reductions in both WMGHG and aerosol emissions under the Covid-19 green recoveries lead to increases ranging from 0 to 0.3 W m-2 in global annual mean anthropogenic ERF over the period 2020-2050 relative to the Shared Socioeconomic Pathway 2-4.5 scenario (the baseline case). These positive ERFs are mainly attributed to the rapid and dramatic decreases in atmospheric aerosol content that increase net shortwave radiative flux at the top of atmosphere via weakening the direct aerosol effect and low cloud cover. At the regional scale, reductions in aerosols contribute to positive ERFs throughout the Northern Hemisphere, while the decreased WMGHGs dominate negative ERFs over the areas away from aerosol pollution, such as the Southern Hemisphere oceans. This drives a strong interhemispheric contrast of ERFs. In contrast, the increased anthropogenic emissions under the fossil-fueled recovery scenario lead to an increase of 0.3 W m-2 in global annual mean ERF in 2050 compared with the baseline case, primarily due to the contribution of WMGHG ERFs. The regional ERF changes are highly dependent on local cloud radiative effects.

2.
EClinicalMedicine ; 46: 101373, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1850961

ABSTRACT

Background: There are concerns that the use of non-steroidal anti-inflammatory drugs (NSAIDs) may increase the risk of adverse outcomes among patients with coronavirus COVID-19. This study aimed to synthesize the evidence on associations between the use of NSAIDs and adverse outcomes. Methods: A systematic search of WHO COVID-19 Database, Medline, the Cochrane Library, Web of Science, Embase, China Biology Medicine disc, China National Knowledge Infrastructure, and Wanfang Database for all articles published from January 1, 2020, to November 7, 2021, as well as a supplementary search of Google Scholar. We included all comparative studies that enrolled patients who took NSAIDs during the COVID-19 pandemic. Data extraction and quality assessment of methodology of included studies were completed by two reviewers independently. We conducted a meta-analysis on the main adverse outcomes, as well as selected subgroup analyses stratified by the type of NSAID and population (both positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not). Findings: Forty comparative studies evaluating 4,867,795 adult cases were identified. Twenty-eight (70%) of the included studies enrolled patients positive to SARS-CoV-2 tests. The use of NSAIDs did not reduce mortality outcomes among people with COVID-19 (number of studies [N] = 29, odds ratio [OR] = 0.93, 95% confidence interval [CI]: 0.75 to 1.14, I2  = 89%). Results suggested that the use of NSAIDs was not significantly associated with higher risk of SARS-CoV-2 infection in patients with or without COVID-19 (N = 10, OR = 0.96, 95% CI: 0.86 to 1.07, I2  = 78%; N = 8, aOR = 1.01, 95% CI: 0.94 to 1.09, I2  = 26%), or an increased probability of intensive care unit (ICU) admission (N = 12, OR = 1.28, 95% CI: 0.94 to 1.75, I2  = 82% ; N = 4, aOR = 0.89, 95% CI: 0.65 to 1.22, I2  = 60%), requiring mechanical ventilation (N = 11, OR = 1.11, 95% CI: 0.79 to 1.54, I2  = 63%; N = 5, aOR = 0.80, 95% CI: 0.52 to 1.24, I2  = 66%), or administration of supplemental oxygen (N = 5, OR = 0.80, 95% CI: 0.52 to 1.24, I2  = 63%; N = 2, aOR = 1.00, 95% CI: 0.89 to 1.12, I2  = 0%). The subgroup analysis revealed that, compared with patients not using any NSAIDs, the use of ibuprofen (N = 5, OR = 1.09, 95% CI: 0.50 to 2.39; N = 4, aOR = 0.95, 95% CI: 0.78 to 1.16) and COX-2 inhibitor (N = 4, OR = 0.62, 95% CI: 0.35 to 1.11; N = 2, aOR = 0.73, 95% CI: 0.45 to 1.18) were not associated with an increased risk of death. Interpretation: Data suggests that NSAIDs such as ibuprofen, aspirin and COX-2 inhibitor, can be used safely among patients positive to SARS-CoV-2. However, for some of the analyses the number of studies were limited and the quality of evidence was overall low, therefore more research is needed to corroborate these findings. Funding: There was no funding source for this study.

3.
Int J Biol Sci ; 18(5): 1865-1877, 2022.
Article in English | MEDLINE | ID: covidwho-1753904

ABSTRACT

Following onset of the first recorded case of Coronavirus disease 2019 (COVID-19) in December 2019, more than 269 million cases and over 5.3 million deaths have been confirmed worldwide. COVID-19 is a highly infectious pneumonia, caused by a novel virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, it poses a severe threat to human health across the globe, a trend that is likely to persist in the foreseeable future. This paper reviews SARS-CoV-2 immunity, the latest development of anti-SARS-CoV-2 drugs as well as exploring in detail, immune escape induced by SARS-CoV-2. We expect that the findings will provide a basis for COVID-19 prevention and treatment.


Subject(s)
COVID-19 , Pandemics , Humans , Immunity , SARS-CoV-2
4.
Eur J Pediatr ; 181(5): 2135-2146, 2022 May.
Article in English | MEDLINE | ID: covidwho-1699807

ABSTRACT

The purpose of this systematic review is to evaluate the efficacy and safety of using potential drugs: remdesivir and glucocorticoid in treating children and adolescents with COVID-19 and intravenous immunoglobulin (IVIG) in treating MIS-C. We searched seven databases, three preprint platform, ClinicalTrials.gov, and Google from December 1, 2019, to August 5, 2021, to collect evidence of remdesivir, glucocorticoid, and IVIG which were used in children and adolescents with COVID-19 or MIS-C. A total of nine cohort studies and one case series study were included in this systematic review. In terms of remdesivir, the meta-analysis of single-arm cohort studies have shown that after the treatment, 54.7% (95%CI, 10.3 to 99.1%) experienced adverse events, 5.6% (95%CI, 1.2 to 10.1%) died, and 27.0% (95%CI, 0 to 73.0%) needed extracorporeal membrane oxygenation or invasive mechanical ventilation. As for glucocorticoids, the results of the meta-analysis showed that the fixed-effect summary odds ratio for the association with mortality was 2.79 (95%CI, 0.13 to 60.87), and the mechanical ventilation rate was 3.12 (95%CI, 0.80 to 12.08) for glucocorticoids compared with the control group. In terms of IVIG, most of the included cohort studies showed that for MIS-C patients with more severe clinical symptoms, IVIG combined with methylprednisolone could achieve better clinical efficacy than IVIG alone. CONCLUSIONS: Overall, the current evidence in the included studies is insignificant and of low quality. It is recommended to conduct high-quality randomized controlled trials of remdesivir, glucocorticoids, and IVIG in children and adolescents with COVID-19 or MIS-C to provide substantial evidence for the development of guidelines. WHAT IS KNOWN: • The efficacy and safety of using potential drugs such as remdesivir, glucocorticoid, and intravenous immunoglobulin (IVIG) in treating children and adolescents with COVID-19/MIS-C are unclear. WHAT IS NEW: • Overall, the current evidence cannot adequately demonstrate the effectiveness and safety of using remdesivir, glucocorticoids, and IVIG in treating children and adolescents with COVID-19 or MIS-C. • We are calling for the publication of high-quality clinical trials and provide substantial evidence for the development of guidelines.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Adolescent , COVID-19/complications , Child , Glucocorticoids/therapeutic use , Humans , Immunoglobulins, Intravenous/adverse effects , Respiration, Artificial , Systemic Inflammatory Response Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL